

# LAPEX A G/30

Polyether Sulphone (PES) based compound.

Glass fibers. Low smoke density and low toxicity index. Very high dimensional stability.

| PHYSICAL PROPERTIES                   | STANDARD    | VALUE MEASURE UNITS         |
|---------------------------------------|-------------|-----------------------------|
| Density                               | ISO 1183    | 1.60 g/cm³                  |
| Linear shrinkage at moulding          |             | 5,                          |
| Longitudinal (0.078in/8,700psi)       | ISO 294-4   | 0.003 ÷ 0.005 in/in         |
| Transversal (0.078in/8,700psi)        | ISO 294-4   | 0.003 ÷ 0.005 in/in         |
| Dimensional stability                 |             | 74                          |
| Moisture absorption (in air)          |             |                             |
| after 24hrs                           | ISO 62-4    | 0.17 %                      |
| MECHANICAL PROPERTIES                 | STANDARD    | VALUE MEASURE UNITS         |
| CHARPY impact strength                |             |                             |
| Unnotched, at +73°F                   | ISO 179-1eU | 11.68 ft.lb/in <sup>2</sup> |
| Notched, at +73°F                     | ISO 179-1eA | 2.80 ft.lb/in <sup>2</sup>  |
| Tensile elongation                    |             |                             |
| At break (0.196 in/min), 73°F         | ISO 527 (1) | 2.0 %                       |
| At break (0.196 in/min), 140°F        | ISO 527 (1) | 2.1 %                       |
| At break (0.196 in/min), 195°F        | ISO 527 (1) | 2.3 %                       |
| At break (0.196 in/min), 250°F        | ISO 527 (1) | 2.4 %                       |
| At break (0.196 in/min), 300°F        | ISO 527 (1) | 2.5 %                       |
| Tensile strength                      |             |                             |
| At break (0.196 in/min), 73°F         | ISO 527 (1) | 18800 psi                   |
| At break (0.196 in/min), 140°F        | ISO 527 (1) | 18100 psi                   |
| At break (0.196 in/min), 195°F        | ISO 527 (1) | 16700 psi                   |
| At break (0.196 in/min), 250°F        | ISO 527 (1) | 14500 psi                   |
| At break (0.196 in/min), 300°F        | ISO 527 (1) | 13000 psi                   |
| Elastic modulus                       |             |                             |
| Tensile (speed 0.04 in/min), at 73°F  | ISO 527 (1) | 1390 kpsi                   |
| Tensile (speed 0.04 in/min), at 140°F | ISO 527 (1) | 1360 kpsi                   |
| Tensile (speed 0.04 in/min), at 195°F | ISO 527 (1) | 1300 kpsi                   |
| Tensile (speed 0.04 in/min), at 250°F | ISO 527 (1) | 1280 kpsi                   |
| Tensile (speed 0.04 in/min), at 300°F | ISO 527 (1) | 1250 kpsi                   |



LAPEX A G/30
Polyether Sulphone (PES) based compound.

Glass fibers. Low smoke density and low toxicity index. Very high dimensional stability.

| THERMAL PROPERTIES                             | STANDARD         | VALUE MEASURE UNITS |
|------------------------------------------------|------------------|---------------------|
| Coefficient of linear thermal expansion (CLTE) |                  |                     |
| +86°C to +212°F (longitudinal)                 | ISO 11359-2      | 11 μin/(in⋅°F)      |
| VICAT - Softening point                        |                  |                     |
| 11 lb (heating rate 122°F/h)                   | ISO 306          | 428 °F              |
| HDT - Heat Deflection Temperature              |                  |                     |
| 66 psi                                         | ISO 75           | 428 °F              |
| 264 psi                                        | ISO 75           | 419 °F              |
| C.U.T Continuous Use Temperature               |                  |                     |
| Long period (20,000h)                          | ASTM E1641/E1877 | 365 °F              |
| FLAMMABILITY                                   | STANDARD         | VALUE MEASURE UNITS |
| Oxygen Index                                   | ASTM D 2863      | 40 %                |
| Flammability rating                            |                  |                     |
| 0.118 in thickness                             | UL 94            | V-0                 |
| 0.059 in thickness                             | UL 94            | V-0                 |
| ELECTRICAL PROPERTIES                          | STANDARD         | VALUE MEASURE UNITS |
| Electrical resistivity                         |                  |                     |
| Surface                                        | ASTM D 257       | 1E12 ohm            |



### LAPEX A G/30

Polyether Sulphone (PES) based compound.

Glass fibers. Low smoke density and low toxicity index. Very high dimensional stability.

#### MATERIAL - STORAGE

Sealed, undamaged packages has to be kept in dry storage facilities, providing they are also able to protect them from weather and accidental damages.

### **HANDLING AND SAFETY**

Detailed information about a safe treatment of the material are indicated in the "Material Safety Data Sheet" (MSDS) furnished with the first material supply. The MSDS may be also sent again in case of loss.

#### PREDRYING CONDITIONS

#### At least 3 hours at 302 ÷ 356°F

These are the suggested conditions to reduce the moisture content to adequate levels. Temperature and drying time can be reduced by using vacuum ovens

### ACTUAL MELT TEMPERATURE

#### 662 ÷ 698°F

The injection molding machine settings needed to obtain the suggested melt temperature will depend greatly on shot size and machine capacity, as well as other molding parameters such as: injection speed, screw RPM, back pressure, etc. On small machines, running short cycles, it is possible to use higher melt temperatures to improve plastification, fluidity and surface appearance, paying attention to any indication of material degradation.

### MOLD TEMPERATURE

#### 284 ÷ 329°F

The mold temperature suggested above is the actual tool steel temperature. This can be significantly different from the tool settings, due to the cooling system efficiency and the accuracy of the temperature control on the tool.

#### INJECTION SPEED

#### Hiah

The advisable injection speed greatly depends on cavity geometry and injection molding machine size. The use of high injection speed can improve the surface appearance, but it can also cause outgassing and burn marks due to overheating through shear stress.

### REGRIND USAGE

The use of regrind is possible, but should be assessed on the basis of the project, moulding parameters, and type of grinding used. The effect of using regrind on material properties must be evaluated by the customer on its specific project and process. High percentages of regrind may cause a reduction in viscosity and fibre length, reducing mechanical properties, first resilience.

### HOT RUNNER MOLDS

Hot runner moulds may be used when a very tight temperature control is assured.



## LAPEX A G/30

Polyether Sulphone (PES) based compound.

Glass fibers. Low smoke density and low toxicity index. Very high dimensional stability.

### TO AVOID

Shut-off nozzles and internally heated hot runners have to be avoided. In order to prevent any material degradation, overdimensioned machines should be avoided.

#### **NOTES**

The products mentioned herein are not suitable for applications in contact with foodstuff or for potable water transportation, or for toy manufacturing. The products mentioned herein are not suitable for applications in the pharmaceutical, medical or dental sector.

### CONTACTS

LATI Industria Termoplastici S.p.A.

Via F. Baracca, 7 - I - 21040 VEDANO OLONA (VA) Tel. +39-0332-409111 - Fax +39-0332-409260 email: techserv@it.lati.com http://www.lati.com http://lambda.lati.it

Values shown are based on testing of injection moulded laboratory test specimens, conditioned according to the standard and represent data that fail within the standard range of properties for non-coloured material, if not otherwise specified. As they may be subject to variations, these values do not represent a sufficient basis for any part design and are not intended for use in establishing values for specification purposes. Properties of moulded parts can be influenced by a wide range of factors including, but not limited to, colorants, part design, processing conditions, post-treatment conditions and usage of reprind during the moulding process. If data are explicitly indicated as provisional, range of properties has to be considered wider. This information and technical assistance are provisional, range of properties has to be considered wider. This information and technical assistance are provisional, range of properties has to be considered wider. This information are designed in the considered wider. This information provided, and assume no responsibility for implementations of the same of the product, and make no representations as to the accuracy, subtability, realisability, realisability, realisability, completieness and sufficiency of the information provided, and assume no responsibility for imprehension in the accuracy, subtability, realisability, re

Copyright © LATI S.p.A. 2013